ÌâÄ¿ÄÚÈÝ
10£®Éè¼×ÒÒÁ½µØÏà¾à100º£À´¬´Ó¼×µØÔÈËÙÊ»µ½Òҵأ¬ÒÑ֪ij´¬µÄ×î´ó´¬ËÙÊÇ36º£Àï/ʱ£ºµ±´¬ËÙ²»´óÓÚÿСʱ30º£Àï/ʱ£¬´¬Ã¿Ð¡Ê±Ê¹ÓõÄȼÁÏ·ÑÓúʹ¬ËÙ³ÉÕý±È£»µ±´¬ËÙ²»Ð¡ÓÚÿСʱ30º£Àï/ʱ£¬´¬Ã¿Ð¡Ê±Ê¹ÓõÄȼÁÏ·ÑÓúʹ¬ËÙµÄÆ½·½³ÉÕý±È£»µ±´¬ËÙΪ30º£Àï/ʱ£¬ËüÿСʱʹÓõÄȼÁÏ·ÑÓÃΪ300Ôª£»ÆäÓà·ÑÓ㨲»ÂÛ´¬ËÙΪ¶àÉÙ£©¶¼ÊÇÿСʱ480Ôª£»£¨1£©ÊÔ°ÑÿСʱʹÓõÄȼÁÏ·ÑÓÃP£¨Ôª£©±íʾ³É´¬ËÙv£¨º£Àï/ʱ£©µÄº¯Êý£»
£¨2£©ÊÔ°Ñ´¬´Ó¼×µØÐÐÊ»µ½ÒÒµØËùÐèÒªµÄ×Ü·ÑÓÃY±íʾ³É´¬ËÙvµÄº¯Êý£»
£¨3£©µ±´¬ËÙΪÿСʱ¶àÉÙº£Àïʱ£¬´¬´Ó¼×µØµ½ÒÒµØËùÐèÒªµÄ×Ü·ÑÓÃ×îÉÙ£¿
·ÖÎö £¨1£©·ÖÀàÌÖÂÛ£¬µ±0£¼v¡Ü30ʱ£¬ÉèP=kv£¬´Ó¶ø½âµÃP=10v£»ÔÙÇóµ±30¡Üv¡Ü36ʱµÄ½âÎöʽ¼´¿É£»
£¨2£©·ÖÀàÌÖÂÛÇó×Ü·ÑÓÃYµÄÖµ£¬´Ó¶øÀûÓ÷ֶκ¯Êýд³ö¼´¿É£»
£¨3£©Óɷֶκ¯ÊýÌÖÂÛÒÔÈ·¶¨º¯ÊýµÄµ¥µ÷ÐÔ£¬´Ó¶øÓɵ¥µ÷ÐÔÇó×îСֵ¼´¿É£®
½â´ð ½â£º£¨1£©ÓÉÌâÒ⣬µ±0£¼v¡Ü30ʱ£¬ÉèP=kv£¬
ÓÉ300=30k½âµÃ£¬k=10£»
¹ÊP=10v£¬
µ±30¡Üv¡Ü36ʱ£¬ÉèP=mv2£¬
ÓÉ300=302m½âµÃ£¬m=$\frac{1}{3}$£»
¹ÊP=$\left\{\begin{array}{l}{10v£¬0£¼v¡Ü30}\\{\frac{1}{3}{v}^{2}£¬30£¼v¡Ü36}\end{array}\right.$£»
£¨2£©µ±0£¼v¡Ü30ʱ£¬
Y=£¨10v+480£©$\frac{100}{v}$=1000+$\frac{48000}{v}$£¬
µ±30¡Üv¡Ü36ʱ£¬
Y=£¨$\frac{1}{3}$v2+480£©•$\frac{100}{v}$=$\frac{100}{3}$v+$\frac{48000}{v}$£»
¹ÊY=$\left\{\begin{array}{l}{1000+\frac{48000}{v}£¬0£¼v¡Ü30}\\{\frac{100}{3}v+\frac{48000}{v}£¬30£¼v¡Ü36}\end{array}\right.$£»
£¨3£©µ±0£¼v¡Ü30ʱ£¬Y=1000+$\frac{48000}{v}$ÊǼõº¯Êý£¬
µ±30¡Üv¡Ü36ʱ£¬Y=$\frac{100}{3}$v+$\frac{48000}{v}$ÔÚ[30£¬36]ÉÏÊǼõº¯Êý£»
¹ÊYÔÚ£¨0£¬36]ÉÏÊǼõº¯Êý£¬
¹Êµ±x=36ʱ£¬YÓÐ×îСֵΪ$\frac{100}{3}$¡Á36+$\frac{48000}{36}$=$\frac{7600}{3}$£¨Ôª£©£®
µãÆÀ ±¾Ì⿼²éÁ˷ֶκ¯ÊýÔÚʵ¼ÊÎÊÌâÖеÄÓ¦Óü°º¯ÊýµÄµ¥µ÷ÐÔµÄÅжÏÓëÓ¦Óã®
| A£® | cosx-sinx | B£® | sinx-cosx | C£® | cosx+sinx | D£® | -cosx-sinx |
| A£® | 2x-y+2=0 | B£® | 2 x+y+2=0 | C£® | x-2y+1=0 | D£® | x+2y-1=0 |
| A£® | $y={£¨\sqrt{x}£©^2}$ | B£® | $y=\sqrt{x^2}$ | C£® | $y=\left\{\begin{array}{l}x£¬£¨x£¾0£©\\-x£¬£¨x£¼0£©\end{array}\right.$ | D£® | $y=\frac{x^2}{x}$ |
| A£® | $\frac{6}{25}$ | B£® | $\frac{16}{25}$ | C£® | $\frac{21}{25}$ | D£® | $\frac{24}{25}$ |
| A£® | g£¨x£©=2x+1 | B£® | g£¨x£©=2x-1 | C£® | g£¨x£©=2x-3 | D£® | g£¨x£©=2x+7 |