题目内容
3.已知函数$f(x)=\left\{\begin{array}{l}-{x^2}-ax-7,(x≤1)\\ \frac{a}{x}(x>1)\end{array}\right.$是R上的增函数,则a的取值范围是( )| A. | -4≤a<0 | B. | a≤-2 | C. | -4≤a≤-2 | D. | a<0 |
分析 由题意根据函数的单调性的性质可得$\left\{\begin{array}{l}{-\frac{a}{2}≥1}\\{a<0}\\{-a-8≤a}\end{array}\right.$,由此求得a的范围.
解答 解:函数$f(x)=\left\{\begin{array}{l}-{x^2}-ax-7,(x≤1)\\ \frac{a}{x}(x>1)\end{array}\right.$是R上的增函数,则$\left\{\begin{array}{l}{-\frac{a}{2}≥1}\\{a<0}\\{-a-8≤a}\end{array}\right.$,
求得-4≤a≤-2,
故选:C.
点评 本题主要考查函数的单调性的性质,属于基础题.
练习册系列答案
相关题目
9.函数y=${log}_{\frac{3}{2}}$(x2-3x-4)的单调增区间为( )
| A. | (-∞,-1) | B. | (4,+∞) | C. | (-∞,$\frac{3}{2}$) | D. | ($\frac{3}{2}$,+∞) |
14.已知p:存在x∈R,mx2+1≤0,q:任意x∈R,x2+mx+1>0,若p且q为真命题,则实数m的取值范
围是( )
围是( )
| A. | m<2 | B. | -2<m<2 | C. | 0<m<2 | D. | -2<m<0 |
8.
对某校高一年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图:
(1)求出表中M、p、m、n的值;
(2)补全频率分布直方图;若该校高一学生有360人,估计他们参加社区服务的次数在区间[15,20)内的人数;
(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[20,25)内的概率.
| 分组 | 频数 | 频率 |
| [10,15) | 10 | 0.25 |
| [15,20) | 25 | n |
| [20,25) | m | p |
| [25,30) | 2 | 0.05 |
| 合计 | M | 1 |
(2)补全频率分布直方图;若该校高一学生有360人,估计他们参加社区服务的次数在区间[15,20)内的人数;
(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[20,25)内的概率.
12.已知全集I={0,1,2,3},集合A={1,2},B={2,3},则A∪(CIB)=( )
| A. | {1} | B. | {2,3} | C. | {0,1,2} | D. | {0,2,3} |