题目内容

18.已知点P是边长为4的正三角形ABC的边BC上的中点,则$\overrightarrow{AP}$•($\overrightarrow{AB}$+$\overrightarrow{AC}$)=24.

分析 由中点的向量表示形式可得$\overrightarrow{AP}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),再由向量数量积的定义和性质,化简整理即可得到所求值.

解答 解:由P为边长为4的正三角形ABC的边BC上的中点,
可得$\overrightarrow{AP}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),
$\overrightarrow{AB}$•$\overrightarrow{AC}$=|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|•cosA=4×4×$\frac{1}{2}$=8,
则$\overrightarrow{AP}$•($\overrightarrow{AB}$+$\overrightarrow{AC}$)=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$)2=$\frac{1}{2}$($\overrightarrow{AB}$2+$\overrightarrow{AC}$2+2$\overrightarrow{AB}$•$\overrightarrow{AC}$)
=$\frac{1}{2}$×(16+16+16)=24.
故答案为:24.

点评 本题考查向量的数量积的定义和性质,考查向量的中点的表示形式,以及运算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网