题目内容

3.在△ABC中,cosA=$\frac{\sqrt{10}}{10}$,sinB=$\frac{2\sqrt{5}}{5}$,求:cosC的值.

分析 由条件利用同角三角的基本关系求得sinA、cosB的值,再利用两角和的余弦公式、诱导公式求得cosC=-cos(A+B)的值.

解答 解:△ABC中,∵cosA=$\frac{\sqrt{10}}{10}$∈(0,$\frac{1}{2}$),∴A∈($\frac{π}{3}$,$\frac{π}{2}$),∴sinA=$\sqrt{{1-cos}^{2}A}$=$\frac{3\sqrt{10}}{10}$,
∵sinB=$\frac{2\sqrt{5}}{5}$∈($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$),∴B∈($\frac{π}{4}$,$\frac{π}{3}$),或B∈($\frac{2π}{3}$,$\frac{3π}{4}$)(舍去),
故B∈($\frac{π}{4}$,$\frac{π}{3}$),cosB=$\sqrt{{1-sin}^{2}B}$=$\frac{\sqrt{5}}{5}$,
∴cosC=-cos(A+B)=-cosAcosB+sinAsinB=-$\frac{\sqrt{10}}{10}•\frac{\sqrt{5}}{5}$+$\frac{3\sqrt{10}}{10}$•$\frac{2\sqrt{5}}{5}$=$\frac{\sqrt{10}}{10}$.

点评 本题主要考查同角三角的基本关系,两角和的余弦公式、诱导公式的应用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网