题目内容
设数列{an}满足:a1=
,且an=
an-1+
(n∈N*,n≥2)
(1)求证:数列{an-
}为等比数列,并求数列{an}的通项公式;
(2)令bn=nan,求{bn}的前n项和Tn.
| 5 |
| 6 |
| 1 |
| 3 |
| 1 |
| 3 |
(1)求证:数列{an-
| 1 |
| 2 |
(2)令bn=nan,求{bn}的前n项和Tn.
考点:数列的求和,等比数列的性质
专题:计算题,等差数列与等比数列
分析:(1)由an=
an-1+
,两边减去
即可得证数列{an-
}为等比数列,运用等比数列的通项公式,即可求出
an;
(2)运用分组求和,将Tn可以分成数列{n•(
)n}与等差数列{
}的和,再运用错位相减法,求出数列
{n•(
)n}的前n项的和,相加即可.
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
an;
(2)运用分组求和,将Tn可以分成数列{n•(
| 1 |
| 3 |
| n |
| 2 |
{n•(
| 1 |
| 3 |
解答:
(1)证明:由an=
an-1+
,两边减去
得,
an-
=≡
(an-1-
)(n∈N*,n≥2)
即
=
,
根据等比数列的定义,
可知数列{an-
}是以
为公比的等比数列,又首项为a1-
=
-
=
,
∴an-
=(
)n,
∴an=
+(
)n;
(2)解:bn=
+n•(
)n,
∴Tn可以分成数列{n•(
)n}与等差数列{
}的和.
令S=1×(
)+2×(
)2+…+n×(
)n---(1)
S=1×(
)2+2×(
)3+…+n×(
)n+1---(2)
(1)-(2):
S=
+(
)2+(
)3+…+(
)n-n×(
)n+1
=
-n×(
)n+1
=
-
-
,
∴S=(
-
-
)×
,
=
-
又令S’=
=
∴Tn=S+S'=
-
+
.
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 2 |
an-
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
即
an-
| ||
an-1-
|
| 1 |
| 3 |
根据等比数列的定义,
可知数列{an-
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 5 |
| 6 |
| 1 |
| 2 |
| 1 |
| 3 |
∴an-
| 1 |
| 2 |
| 1 |
| 3 |
∴an=
| 1 |
| 2 |
| 1 |
| 3 |
(2)解:bn=
| n |
| 2 |
| 1 |
| 3 |
∴Tn可以分成数列{n•(
| 1 |
| 3 |
| n |
| 2 |
令S=1×(
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
(1)-(2):
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
=
| ||||
1-
|
| 1 |
| 3 |
=
| 1 |
| 2 |
| 1 |
| 2×3n |
| n |
| 3n+1 |
∴S=(
| 1 |
| 2 |
| 1 |
| 2×3n |
| n |
| 3n+1 |
| 3 |
| 2 |
=
| 3 |
| 4 |
| 2n+1 |
| 4×3n |
又令S’=
| 1+2+…+n |
| 2 |
| n(n+1) |
| 4 |
∴Tn=S+S'=
| 3 |
| 4 |
| 2n+1 |
| 4×3n |
| n(n+1) |
| 4 |
点评:本题考查等比数列的定义及通项公式,以及数列的求和方法:分组求和、错位相减法,考查基本的运算能力,是一道中档题.
练习册系列答案
相关题目