题目内容
15.函数f(x)=$\left\{{\begin{array}{l}{{x^2}+2x+2(x<0)}\\{-{x^2}(x≥0)}\end{array}}\right.$,若f(f(a))=2,则a=$\sqrt{2}$.分析 当f(a)≥0时,f(f(a))=-[f(a)]2=2,不成立;当f(a)<0时,f(f(a))=(f(a))2+2f(a)+2=2,解得f(a)=0(舍),或f(a)=-2,故f(a)=-2.当a≥0时,f(a)=-a2=-2;当a<0时,f(a)=a2+2a+2=-2.由此能求出a的值.
解答 解:∵f(x)=$\left\{{\begin{array}{l}{{x^2}+2x+2(x<0)}\\{-{x^2}(x≥0)}\end{array}}\right.$,f(f(a))=2,
∴当f(a)≥0时,f(f(a))=-[f(a)]2=2,不成立;
当f(a)<0时,f(f(a))=(f(a))2+2f(a)+2=2,
解得f(a)=0(舍),或f(a)=-2,
故f(a)=-2,
当a≥0时,f(a)=-a2=-2,解得a=$\sqrt{2}$或a=-$\sqrt{2}$(舍),
当a<0时,f(a)=a2+2a+2=-2,无解.
综上,a=$\sqrt{2}$.
故答案为:$\sqrt{2}$.
点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
练习册系列答案
相关题目
20.三棱锥SABC及其三视图中的正视图和侧视图如图所示,则棱SB的长为( )

| A. | 4$\sqrt{2}$ | B. | $\sqrt{19}$ | C. | $\sqrt{20}$ | D. | $4\sqrt{3}$ |
7.在物理实验中,为了研究所挂物体的重量x对弹簧长度y的影响.某学生通过实验测量得到物体的重量与弹簧长度的对比表:
(1)利用最小二乘法求y对x的回归直线方程;
(2)预测所挂物体重量为8g时的弹簧长度.
(参考公式及数据:$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x•\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}},a=\overline y-b\overline x$,$\sum_{i=1}^5{{x_i}^2}=55$$\sum_{i=1}^5{{x_i}{y_i}}=72$)
| 物体重量(单位g) | 1 | 2 | 3 | 4 | 5 |
| 弹簧长度(单位cm) | 1.5 | 3 | 4 | 5 | 6.5 |
(2)预测所挂物体重量为8g时的弹簧长度.
(参考公式及数据:$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x•\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}},a=\overline y-b\overline x$,$\sum_{i=1}^5{{x_i}^2}=55$$\sum_{i=1}^5{{x_i}{y_i}}=72$)
4.在棱锥P-ABC中,侧棱PA、PB、PC两两垂直,Q为底面△ABC内一点,若点Q到三个侧面的距离分别为3、4、5,则以线段PQ为直径的球的体积为( )
| A. | $\frac{125π}{6}$ | B. | $\frac{{125\sqrt{2}π}}{3}$ | C. | $\frac{50π}{3}$ | D. | $\frac{25π}{3}$ |
18.集合M={x|x2-x-6≥0},集合N={x|-3≤x≤1},则N∩(∁RM)等于( )
| A. | [-2,1] | B. | (-2,1] | C. | [-3,3) | D. | (-2,3) |