题目内容

17.用数学归纳法证明“当n为正奇数时,xn+yn能被x+y整除”,第二步归纳假设应该写成(  )
A.假设当n=k(k∈N*)时,xk+yk能被x+y整除
B.假设当n=2k(k∈N*)时,xk+yk能被x+y整除
C.假设当n=2k+1(k∈N*)时,xk+yk能被x+y整除
D.假设当n=2k-1(k∈N*)时,x2k-1+y2k-1能被x+y整除

分析 根据n为正奇数可知n=2k-1,k∈N*

解答 解:∵n为正奇数,
∴n=2k-1,k∈N×
故:选D.

点评 本题考查了数学归纳法的证明步骤,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网