题目内容

7.设三角形ABC的内角A,B,C的对边分别为a,b,c,3a=5csinA,cosB=-$\frac{5}{13}$.
(1)求sinA的值;
(2)设△ABC的面积为$\frac{33}{2}$,求b.

分析 (1)cosB=-$\frac{5}{13}$,B为钝角,可得sinB=$\sqrt{1-co{s}^{2}B}$.由3a=5csinA,由正弦定理可得:3sinA=5sinCsinA,sinA≠0,可得sinC=$\frac{3}{5}$,cosC=$\sqrt{1-si{n}^{2}A}$.可得sinA=sin(B+C).
(2)利用正弦定理可得△ABC的面积为$\frac{33}{2}$=$\frac{1}{2}acsinB$=$\frac{1}{2}$×$\frac{bsinA}{sinB}$×$\frac{bsinC}{sinB}$×sinB.

解答 解:(1)∵cosB=-$\frac{5}{13}$,∴B为钝角,sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{12}{13}$.
∵3a=5csinA,由正弦定理可得:3sinA=5sinCsinA,sinA≠0,
可得sinC=$\frac{3}{5}$,cosC=$\sqrt{1-si{n}^{2}A}$=$\frac{4}{5}$.
∴sinA=sin(B+C)=sinBcosC+cosBsinC=$\frac{12}{13}×\frac{4}{5}$-$\frac{5}{13}×\frac{3}{5}$=$\frac{33}{65}$.
(2)$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}$,可得a=$\frac{bsinA}{sinB}$,c=$\frac{bsinC}{sinB}$.
△ABC的面积为$\frac{33}{2}$=$\frac{1}{2}acsinB$=$\frac{1}{2}$×$\frac{bsinA}{sinB}$×$\frac{bsinC}{sinB}$×sinB=$\frac{{b}^{2}}{2}$×$\frac{\frac{33}{65}×\frac{3}{5}}{\frac{12}{13}}$,
解得b=10.

点评 本题考查了正弦定理、和差公式、同角三角函数基本关系式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网