题目内容
已知函数f(x)=lnx-x-a有两个不同的零点,求实数a的取值范围.
考点:函数零点的判定定理
专题:函数的性质及应用
分析:令g(x)=lnx,h(x)=x+a,将零点问题转化为交点问题,分别画出图象,先求出直线y=x+a,与曲线y=lnx相切时a的值,即而到到图象有两个交点时a的范围.
解答:
解:函数f(x)=lnx-x-a有两个不同的零点,
∴f(x)=lnx-x-a=0有两个不同的根,
∴lnx=x+a,
令g(x)=lnx,h(x)=x+a,
在同一坐标系中画出两个函数的图象,如图,
当直线y=x+a,与曲线y=lnx相切时,设切点为(x0,x0+a),
∴k=1=g′(x0)=
∴x0=1,
∴g(x0)=0=1+a,
∴a=-1,
故当a<-1函数g(x),h(x)的图象有两个不同的交点,
实数a的取值范围为(-∞,-1)
∴f(x)=lnx-x-a=0有两个不同的根,
∴lnx=x+a,
令g(x)=lnx,h(x)=x+a,
在同一坐标系中画出两个函数的图象,如图,
当直线y=x+a,与曲线y=lnx相切时,设切点为(x0,x0+a),
∴k=1=g′(x0)=
| 1 |
| x0 |
∴x0=1,
∴g(x0)=0=1+a,
∴a=-1,
故当a<-1函数g(x),h(x)的图象有两个不同的交点,
实数a的取值范围为(-∞,-1)
点评:本题考察了函数的零点问题,渗透了转化思想,关键是求出直线和曲线相切时参数的值,考查数形结合思想,属于中档题.
练习册系列答案
相关题目
A、
| ||
B、
| ||
C、
| ||
D、
|
甲:动点P到两定点A,B的距离之和为|PA|+|PB|=2a(a>0且a为常数);乙:点P的轨迹是椭圆,且A,B是椭圆的两个焦点,甲是乙的( )
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充要条件 |
| D、既不充分也不必要条件 |