题目内容
11.设f(x)=(2x-1)ex,则f′(0)等于( )| A. | 1 | B. | -1 | C. | 4 | D. | -4 |
分析 令导函数中的x等于0求出f′(0)的值.
解答 解:∵f(x)=(2x-1)ex,
∴f′(x)=2ex+(2x-1)ex,
∴f′(0)=2e0+(2×0-1)e0=1,
故选:A
点评 本题考查了导数的运算法则,以及函数在某点处的导数值,属于基础题.
练习册系列答案
相关题目
1.若定义域均为D的三个函数f(x),g(x),h(x)满足条件:?x∈D,点(x,g(x)) 与点(x,h(x))都关于点(x,f(x))对称,则称h(x)是g(x)关于f(x)的“对称函数”.已知g(x)=$\sqrt{1-{x}^{2}}$,f(x)=3x+b,h(x)是g(x)关于f(x)的“对称函数”,且h(x)≥g(x)恒成立,则实数b的取值范围是( )
| A. | (-∞,-$\sqrt{10}$] | B. | [-$\sqrt{10}$,$\sqrt{10}$] | C. | [-3,$\sqrt{10}$] | D. | [$\sqrt{10}$,+∞) |
2.已知点F1与点F2是双曲线$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{10}$=1的左、右焦点,点P在直线l:x-$\sqrt{3}$y+8+2$\sqrt{3}$=0上,当∠F1PF2取最大值时,$\frac{|P{F}_{1}|}{|P{F}_{2}|}$的比值是( )
| A. | $\sqrt{2}+1$ | B. | $\sqrt{3}+1$ | C. | $\sqrt{2}-1$ | D. | $\sqrt{3}-1$ |
6.设a,b,c为三条不同的直线,α,β是两个不同的平面,则下列判断正确的是( )
| A. | 若a⊥b,b⊥c,则a⊥c | B. | 若a∥α,b∥α,则a∥b | C. | 若a∥α,b⊥α,则b∥α | D. | 若a⊥α,α∥β,则a⊥β |
16.函数f(x)=Asin(x+φ)(A>0)在x=$\frac{π}{3}$处取得最小值,则( )
| A. | f(x+$\frac{π}{3}$)是奇函数 | B. | f(x+$\frac{π}{3}$)是偶函数 | C. | f(x-$\frac{π}{3}$)是奇函数 | D. | f(x-$\frac{π}{3}$)是偶函数 |
20.已知实数x、y满足$\left\{\begin{array}{l}{x-y+2≥0}\\{x+2y+2≥0}\\{4x-y-10≤0}\end{array}\right.$,z=kx+y(k∈R)仅在(4,6)处取得最大值,则k的取值范围是( )
| A. | k>1 | B. | k>-1 | C. | k<-$\frac{1}{2}$ | D. | k<-4 |
13.直线$\left\{\begin{array}{l}x=5-3t\\ y=3+\sqrt{3}t\end{array}\right.$(为参数)的倾斜角为( )
| A. | 30° | B. | 60° | C. | 120° | D. | 150° |