题目内容
在△ABC中,向量|
|=1,|
|=2,∠A=
,D是BC的中点,则|
|=( )
| AB |
| AC |
| π |
| 3 |
| AD |
分析:法一:在△ABC中,由D是BC的中点,知
=
(
+
),由向量|
|=1,|
|=2,∠A=
,利用|
| =
,能求出结果.
法二:过点B作BE∥AC,过点C作CE∥AB,BE与CE交于点E,连接AE,D是AE的中点.在△ABE中,|
| =1,|
| =2,∠ABE=π-
=
,由余弦定理求出|
| =
,故|
|=
.
| AD |
| 1 |
| 2 |
| AB |
| AC |
| AB |
| AC |
| π |
| 3 |
| AD |
| 1 |
| 2 |
(
|
法二:过点B作BE∥AC,过点C作CE∥AB,BE与CE交于点E,连接AE,D是AE的中点.在△ABE中,|
| AB |
| BE |
| π |
| 3 |
| 2π |
| 3 |
| AE |
| 7 |
| AD |
| ||
| 2 |
解答:
解:解法一:在△ABC中,向量|
|=1,|
|=2
∠A=
,D是BC的中点,
∴
=
(
+
),
∴|
| =
=
=
.
故选D.
解法二:在△ABC中,向量|
|=1,|
|=2
∠A=
,D是BC的中点,
过点B作BE∥AC,过点C作CE∥AB,BE与CE交于点E,
连接AE,∵ABEC是平行四边形,
∴D是AE的中点.
在△ABE中,|
| =1,|
| =2,
∠ABE=π-
=
,
∴|
| 2=|
|2+ |
|2-2|
| •|
| •cos
=1+4-2×1×2×(-
)=7.
∴|
| =
,
故|
|=
.
故选D.
| AB |
| AC |
∠A=
| π |
| 3 |
∴
| AD |
| 1 |
| 2 |
| AB |
| AC |
∴|
| AD |
| 1 |
| 2 |
(
|
=
| 1 |
| 2 |
1+2+2×1×2×
|
=
| ||
| 2 |
故选D.
解法二:在△ABC中,向量|
| AB |
| AC |
∠A=
| π |
| 3 |
过点B作BE∥AC,过点C作CE∥AB,BE与CE交于点E,
连接AE,∵ABEC是平行四边形,
∴D是AE的中点.
在△ABE中,|
| AB |
| BE |
∠ABE=π-
| π |
| 3 |
| 2π |
| 3 |
∴|
| AE |
| AB |
| BE |
| AB |
| BE |
| 2π |
| 3 |
=1+4-2×1×2×(-
| 1 |
| 2 |
∴|
| AE |
| 7 |
故|
| AD |
| ||
| 2 |
故选D.
点评:本题考查向量的模的求法,是基础题.解题时要认真审题,合理地进行等价转化,注意余弦定理的合理运用.
练习册系列答案
相关题目