题目内容
在△ABC中,向量
=(2cosB,1),
=(2cos2(
+
),-1+sin2B),且满足|
+
|=|
-
|.
(Ⅰ)求角B的大小.
(Ⅱ)求sin2A+sin2C的取值范围.
| m |
| n |
| π |
| 4 |
| B |
| 2 |
| m |
| n |
| m |
| n |
(Ⅰ)求角B的大小.
(Ⅱ)求sin2A+sin2C的取值范围.
分析:(Ⅰ)由|
+
|=|
-
|,知
•
=2cosB(1-sinB)+(-1+sin2B)=0,由此能求出角B的大小.
(Ⅱ)由(Ⅰ)知△ABC中,B=
,A+C=
,A∈(0,
),由sin2A+sin2C=
+
=
cos(2A-
)+1,能求出sin2A+sin2C的取值范围.
| m |
| n |
| m |
| n |
| m |
| n |
(Ⅱ)由(Ⅰ)知△ABC中,B=
| π |
| 3 |
| 2π |
| 3 |
| 2π |
| 3 |
| 1-cos2A |
| 2 |
| 1-cos2C |
| 2 |
| 1 |
| 2 |
| π |
| 6 |
解答:解:(Ⅰ)∵在△ABC中,向量
=(2cosB,1),
=( 2cos2(
+
),-1+sin2B),
∴
=(1-sinB,-1+sin2B),
∵|
+
|=|
-
|,
∴
•
=2cosB(1-sinB)+(-1+sin2B)=2cosB-2cosBsinB+sin2B-1=2cosB-1=0,
∴cosB=
,∴∠B=
.
(Ⅱ)由△ABC中,B=
,得A+C=
,∴A∈(0,
),
sin2A+sin2C=
+
=1-
cos2A-
cos(
-2A)=
cos(2A-
)+1.
由A∈(0,
),得 2A-
∈(-
,
),
∴-
<cos(2A-
)≤1,
∴
≤
cos(2A-
)+1≤
.
∴sin2A+sin2C的取值范围是[
,
].
| m |
| n |
| π |
| 4 |
| B |
| 2 |
∴
| n |
∵|
| m |
| n |
| m |
| n |
∴
| m |
| n |
∴cosB=
| 1 |
| 2 |
| π |
| 3 |
(Ⅱ)由△ABC中,B=
| π |
| 3 |
| 2π |
| 3 |
| 2π |
| 3 |
sin2A+sin2C=
| 1-cos2A |
| 2 |
| 1-cos2C |
| 2 |
=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 4π |
| 3 |
| 1 |
| 2 |
| π |
| 6 |
由A∈(0,
| 2π |
| 3 |
| π |
| 6 |
| π |
| 6 |
| π |
| 2 |
∴-
| 1 |
| 2 |
| π |
| 6 |
∴
| 3 |
| 4 |
| 1 |
| 2 |
| π |
| 6 |
| 3 |
| 2 |
∴sin2A+sin2C的取值范围是[
| 3 |
| 4 |
| 3 |
| 2 |
点评:本题考查平面向量和三角函数的综合运用,解题时要认真审题,仔细解答,注意三角函数恒等变换的合理运用.
练习册系列答案
相关题目