题目内容

若函数f(x)满足?m∈R,m≠0,对定义域内的任意x,f(x+m)=f(x)+f(m)恒成立,则称f(x)为m函数,现给出下列函数:
y=
1
x
;   
②y=2x;
③y=sinx;
④y=1nx
其中为m函数的个数为(  )
A、1B、3C、4D、2
考点:抽象函数及其应用
专题:函数的性质及应用
分析:根据m函数定义逐项判断即可.
解答: 解:①若f(x)=
1
x
,则由f(x+m)=f(x)+f(m)得,
1
x+m
=
1
x
+
1
m
1
m
=
1
x+m
-
1
x
=
-m
x(x+m)

所以不存在常数m使f(x+m)=f(x)+f(m)成立,所以①不是m函数.
②若f(x)=2x,由f(x+m)=f(x)+f(m)得,2(x+m)=2x+2m,此时恒成立,所以②y=2x是m函数.
③若f(x)=sinx,由f(x+m)=f(x)+f(m)得sin(x+m)=sinx+sinm,所以当m=π时,f(x+m)=f(x)+f(m)成立,所以③y=sinx是m函数.
④若f(x)=1nx,则由f(x+m)=f(x)+f(m)得ln(x+m)=lnx+lnm,即ln(x+m)=lnmx,所以x+m=mx,要使x+m=mx成立则有
x=1
m=0
,所以方程无解,所以④y=1nx不是m函数.
所以为m函数的序号是②③.
其中为m函数的个数为:2个.
故选:D
点评:本题考查函数恒成立问题,考查学生利用所学知识分析解决新问题的能力,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网