题目内容
若O为ABC内部任意一点,边AO并延长交对边于A′,则
=
,同理边BO,CO并延长,分别交对边于B′,C′,这样可以推出
+
+
= ;类似的,若O为四面体ABCD内部任意一点,连AO,BO,CO,DO并延长,分别交相对面于A′,B′,C′,D′,则
+
+
+
= .
| AO |
| AA′ |
| S四边形ABOC |
| S△ABC |
| AO |
| AA′ |
| BO |
| BB′ |
| CO |
| CC′ |
| AO |
| AA′ |
| BO |
| BB′ |
| CO |
| CC′ |
| DO |
| DD′ |
考点:类比推理
专题:推理和证明
分析:(1)根据
=
,推得
=
,
=
,然后求和即可;
(2)根据所给的定理,把面积类比成体积,求出
+
+
+
的值即可.
| AO |
| AA′ |
| S四边形ABOC |
| S△ABC |
| BO |
| BB′ |
| S四边形BAOC |
| S△ABC |
| CO |
| CC′ |
| S四边形CAOB |
| S△ABC |
(2)根据所给的定理,把面积类比成体积,求出
| AO |
| AA′ |
| BO |
| BB′ |
| CO |
| CC′ |
| DO |
| DD′ |
解答:
解:(1)根据
=
推得
=
,
=
所以
+
+
=
=
=2
(2)根据所给的定理,把面积类比成体积,可得
+
+
+
=
+
+
+
=
=3
故答案为:2,3.
| AO |
| AA′ |
| S四边形ABOC |
| S△ABC |
推得
| BO |
| BB′ |
| S四边形BAOC |
| S△ABC |
| CO |
| CC′ |
| S四边形CAOB |
| S△ABC |
所以
| AO |
| AA′ |
| BO |
| BB′ |
| CO |
| CC′ |
=
| S四边形ABOC+S四边形BAOC+S四边形CAOB |
| S△ABC |
=
| 2S△ABC |
| S△ABC |
=2
(2)根据所给的定理,把面积类比成体积,可得
| AO |
| AA′ |
| BO |
| BB′ |
| CO |
| CC′ |
| DO |
| DD′ |
=
| VAOBCD |
| V四面体ABCD |
| VBOACD |
| V四面体ABCD |
| VCOABD |
| V四面体ABCD |
| VDOABC |
| V四面体ABCD |
=
| 3V四面体ABCD |
| V四面体ABCD |
=3
故答案为:2,3.
点评:本题主要考查了类比推理的思想和方法,解答此类问题的关键是根据所给的定理类比出可能的定理.
练习册系列答案
相关题目
函数y=x3-3x2+3在(1,1)处的切线方程为( )
| A、y=-3x+4 |
| B、y=3x-4 |
| C、y=-4x+3 |
| D、y=4x-3 |
直线l:y=k(x+2)被圆C:x2+y2=4截得的线段长为2,则k的值为( )
A、±
| ||||
B、±
| ||||
C、±
| ||||
D、±
|
| A、8,5 | B、5,5 |
| C、8,8 | D、7,6 |