题目内容
如图,设椭圆(a>1).
(Ⅰ)求直线y=kx+1被椭圆截得的线段长(用a、k表示);
(Ⅱ)若任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.
已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b相交”是“平面α和平面β相交”的
(A)充分不必要条件 (B)必要不充分条件
(C)充要条件 (D)既不充分也不必要条件
设p:实数x,y满足(x–1)2–(y–1)2≤2,q:实数x,y满足 则p是q的
(A)必要不充分条件 (B)充分不必要条件 (C)充要条件 (D)既不充分也不必要条件
= 。
为了得到函数y=sin的图象,只需把函数y=sinx的图象上所有的点
(A)向左平行移动个单位长度
(B)向右平行移动个单位长度
(C)向上平行移动个单位长度
(D)向下平行移动个单位长度
如图,在△ABC中,AB=BC=2,∠ABC=120°.若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是 .
已知椭圆C1:+y2=1(m>1)与双曲线C2:–y2=1(n>0)的焦点重合,e1,e2分别为C1,C2的离心率,则
A.m>n且e1e2>1 B.m>n且e1e2<1 C.m<n且e1e2>1 D.m<n且e1e2<1
已知,方程表示圆,则圆心坐标是_____,半径是______.
已知函数f(x)=4tanxsin()cos()-.
(Ⅰ)求f(x)的定义域与最小正周期;
(Ⅱ)讨论f(x)在区间[]上的单调性.