题目内容

6.若函数f(x)=$\frac{{2x}^{2}-a}{x-1}$(a<2)在区间(1,+∞)上的最小值为6,则实数a的值为(  )
A.2B.$\frac{3}{2}$C.1D.$\frac{1}{2}$

分析 令t=x-1(t>0),即x=t+1,即有y=$\frac{2(t+1)^{2}-a}{t}$=2t+$\frac{2-a}{t}$+4(2<a),运用基本不等式可得最小值,再解方程即可得到所求a的值.

解答 解:令t=x-1(t>0),即x=t+1,
即有y=$\frac{2(t+1)^{2}-a}{t}$=2t+$\frac{2-a}{t}$+4(2<a),
≥2$\sqrt{2t•\frac{2-a}{t}}$+4=2$\sqrt{2(2-a)}$+4,
当且仅当2t=$\frac{2-a}{t}$时,取得最小值.
由题意可得2$\sqrt{2(2-a)}$+4=6,
解得a=$\frac{3}{2}$.
故选B.

点评 本题考查已知函数的最值求参数的值,注意运用换元法和基本不等式,注意满足的条件:一正二定三等,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网