题目内容
11.展开式${({{x^2}-\frac{2}{x^3}})^5}$中的常数项为40.分析 根据二项展开式的通项公式,令x的指数等于0,求出r的值,即可求出展开式中的常数项.
解答 解:展开式${({{x^2}-\frac{2}{x^3}})^5}$的通项公式为
Tr+1=${C}_{5}^{r}$•(x2)5-r•${(-\frac{2}{{x}^{3}})}^{r}$=(-2)r•${C}_{5}^{r}$•x10-5r,
令10-5r=0,解得r=2;
∴展开式中的常数项为
T3=(-2)2•${C}_{5}^{2}$=40.
故答案为:40.
点评 本题考查了二项展开式的通项公式应用问题,是基础题.
练习册系列答案
相关题目
1.某房屋开发公司根据市场调查,计划在2017年开发的楼盘中设计“特大套”、“大套”、“经济适用房”三类商品房,每类房型中均有舒适和标准两种型号.某年产量如表:
若按分层抽样的方法在这一年生产的套房中抽取50套进行检测,则必须抽取“特大套”套房10套,“大套”15套.
(1)求x,y的值;
(2)在年终促销活动中,奖给了某优秀销售公司2套舒适型和3套标准型“经济适用型”套房,该销售公司又从中随机抽取了2套作为奖品回馈消费者.求至少有一套是舒适型套房的概率;
(3)今从“大套”类套房中抽取6套,进行各项指标综合评价,并打分如下:9.0 9.2 9.5 8.8 9.6 9.7
现从上面6个分值中随机的一个一个地不放回抽取,规定抽到数9.6或9.7,抽取工作即停止.记在抽取到数9.6或9.7所进行抽取的次数为ξ,求ξ的分布列及数学期望.
| 房型 | 特大套 | 大套 | 经济适用房 |
| 舒适 | 100 | 150 | x |
| 标准 | 300 | y | 600 |
(1)求x,y的值;
(2)在年终促销活动中,奖给了某优秀销售公司2套舒适型和3套标准型“经济适用型”套房,该销售公司又从中随机抽取了2套作为奖品回馈消费者.求至少有一套是舒适型套房的概率;
(3)今从“大套”类套房中抽取6套,进行各项指标综合评价,并打分如下:9.0 9.2 9.5 8.8 9.6 9.7
现从上面6个分值中随机的一个一个地不放回抽取,规定抽到数9.6或9.7,抽取工作即停止.记在抽取到数9.6或9.7所进行抽取的次数为ξ,求ξ的分布列及数学期望.
2.若复数z满足z(1+i)=1-2i,其中i为虚数单位,则复数z对应的点在( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
1.
如图,圆台的高为4,上、下底面半径分别为3、5,M、N分别在上、下底面圆周上,且<$\overrightarrow{{O}_{2}M}$,$\overrightarrow{{O}_{1}N}$>=120°,则|$\overrightarrow{MN}$|等于( )
| A. | $\sqrt{65}$ | B. | 5$\sqrt{2}$ | C. | $\sqrt{35}$ | D. | 5 |