题目内容

15.已知cos(75°+α)=$\frac{3}{5}$,且75°+α是第四象限角,求cos(105°-α)+sin(α-105°)+sin(15°-α)的值.

分析 由已知利用同角三角函数基本关系式可求sin(75°+α)的值,利用诱导公式即可化简求值.

解答 解:∵cos(75°+α)=$\frac{3}{5}$,且75°+α是第四象限角,
∴sin(75°+α)=-$\sqrt{1-co{s}^{2}(75°+α)}$=-$\frac{4}{5}$,
∴cos(105°-α)+sin(α-105°)+sin(15°-α)
=cos(75°+α-180°)+sin(α+75°-180°)-sin(75°+α-90°)
=-cos(75°+α)-sin(α+75°)+cos(75°+α)
=-$\frac{3}{5}$-(-$\frac{4}{5}$)+$\frac{3}{5}$
=$\frac{4}{5}$.

点评 本题主要考查了同角三角函数基本关系式,诱导公式的综合应用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网