题目内容

若点P(2x,1-x,1)在点A(1,0,0),B(0,1,0),C(0,0,1)所确定的平面内,则实数x的值为(  )
A、-1B、0C、1D、2
考点:空间中的点的坐标
专题:空间向量及应用
分析:根据向量的坐标表示法求出向量
AP
AB
AC
的坐标,再利用向量的共面定理列出方程组,求出x的值.
解答: 解:∵
AP
=(2x-1,1-x,1),
AB
=(-1,1,0),
AC
=(-1,0,1).
由题意,设
AP
AB
AC

(2x-1,1-x,0)=λ(-1,1,0)+μ(-1,0,1),
2x-1=-λ-μ
1-x=λ
μ=0

解得x=0.
故选:B.
点评:本题考查了空间向量的应用问题,解题的关键是利用向量的共面定理列出方程组,是基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网