题目内容

15.已知Sn为等差数列{an}的前n项和,且a2=3,S4=16,
(1)求数列{an}的通项公式;
(2)设bn=$\frac{2}{{a}_{n}•{a}_{n+1}}$(n∈N*),求数列{bn}的前n项和Tn

分析 (1)运用等差数列的通项公式和求和公式,解方程组,可得首项和公差,即可得到所求通项;
(2)求得bn=$\frac{1}{2n-1}$-$\frac{1}{2n+1}$,再由数列的求和方法:裂项相消求和,化简整理,即可得到所求和.

解答 解:(1)设数列{an}的首项为a1,公差为d,
由题意得$\left\{\begin{array}{l}{a_2}={a_1}+d=3\\{S_4}=4{a_1}+6d=16\end{array}\right.$,
解得$\left\{\begin{array}{l}{a_1}=1\\ d=2\end{array}\right.$,
故数列{an}的通项公式${a_n}=1+2(n-1)=2n-1(n∈{N^*})$;
(2)由(1)得${b_n}=\frac{2}{(2n-1)(2n+1)}=\frac{1}{2n-1}-\frac{1}{2n+1}$,
即有${T_n}=(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})+(\frac{1}{5}-\frac{1}{6})+…+(\frac{1}{2n-1}-\frac{1}{2n+1})$
=$1-\frac{1}{2n+1}=\frac{2n}{2n+1}(n∈{N^*})$.

点评 本题考查等差数列的通项公式的求法,注意运用等差数列的通项公式和求和公式,考查数列的求和方法:裂项相消求和,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网