题目内容

4.已知函数f(x)=Asin(x+φ)(A>0,0<φ<π)的最大值是1,其图象经过点M($\frac{π}{3}$,$\frac{1}{2}$),则f($\frac{3π}{4}$)=-$\frac{\sqrt{2}}{2}$.

分析 由已知函数f(x),得出A的值,再根据函数图象过点M,求出φ的值,即可写出f(x)的解析式,进而利用诱导公式及特殊角的三角函数值即可计算得解.

解答 解:由函数f(x)=Asin(x+φ)(A>0,0<φ<π),x∈R的最大值是1,
∴A=1;
又其图象经过点M($\frac{π}{3}$,$\frac{1}{2}$),
∴sin($\frac{π}{3}$+φ)=$\frac{1}{2}$,
∴$\frac{π}{3}$+φ=$\frac{π}{6}$+2kπ,或$\frac{π}{3}$+φ=$\frac{5π}{6}$+2kπ,k∈Z;
∴φ=-$\frac{π}{6}$+2kπ,或φ=$\frac{π}{2}$+2kπ,k∈Z;
又0<φ<π,
∴φ=$\frac{π}{2}$;
∴f(x)=sin(x+$\frac{π}{2}$)=cosx;…(4分)
∴f($\frac{3π}{4}$)=cos$\frac{3π}{4}$=-$\frac{\sqrt{2}}{2}$…(6分)
故答案为:-$\frac{\sqrt{2}}{2}$.

点评 本题考查了同角的三角函数关系与两角差的余弦公式的应用问题,也考查了三角函数的图象与性质的应用问题,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网