题目内容

1.在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,若c=3,且$\frac{sinC}{sinB}$=$\frac{3}{5}$.
(1)求b;
(2)若a=7,求∠A.

分析 (1)由已知及正弦定理即可求得b的值.
(2)由余弦定理可得cosA的值,结合范围A∈(0,π),利用特殊角的三角函数值即可得解.

解答 解:(1)∵c=3,且$\frac{sinC}{sinB}$=$\frac{3}{5}$,
∴由正弦定理可得:b=$\frac{c•sinB}{sinC}$=$\frac{3}{\frac{3}{5}}$=5.
(2)∵a=7,c=3,由(1)可得:b=5,
∴由余弦定理可得:cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{25+9-49}{2×5×3}$=-$\frac{1}{2}$,
∵A∈(0,π),
∴A=$\frac{2π}{3}$.

点评 本题主要考查了正弦定理,余弦定理,特殊角的三角函数值在解三角形中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网