题目内容
已知数列{an}的前n项和为Sn,且an是Sn与2的等差中项,而数列{bn}的首项为1,bn+1-bn-2=0.
(1)求a1和a2的
值;
(2)求数列{an},{bn}的通项an和bn;
(3)设cn=an·bn,求数列{cn}的前n项和Tn.
解析:(1)因为an是Sn与2的等差中项,
所以
Sn=2an-2,所以a1=S1=2a1-2,解
得a1=2,a1+a2=S2=2a2-2,解得a2=4;
(2)因为Sn=2an-2,①
所以Sn-1=2an-1-2(n≥2),②
①-②得:an=2an-2an-1,即an=2an-1(n≥2,n∈N*),
因为a1≠0,所以
=2(n≥2,n∈N
*),即数列{an}是等比数列.
因为a1=2,所以an=a1qn-1=2×2n-1=2n.
由已知得bn+1-bn=2,即数列{bn}是等差数列,
又b1=1,所以bn=b1+(n-1)d=1+2(n-1)=2n-1;
(3)由cn=an·bn=(2n-1)2n,
所以Tn=a1b1+a2b2+…+anbn=1×2+3×22+5×23+…+(2n-1)2n,③
所以2Tn=1×22+3×23+…+(2n-3)2n+(2n-1)2n+1,④
③-④得:-Tn=1×2+(2×22+2×23+…+2×2n)-(2n-1)2n+1,
即:-Tn=1×2+(23+24+…+2n+1)-(2n-1)2n+1=2+
-(2n-1)2n+1,
所以Tn=(2n-3)2n+1+6.
练习册系列答案
相关题目