题目内容

3.①求函数的导数:y=$\frac{x}{(2x+1)^{3}}$
②计算定积分:${∫}_{-1}^{8}$$\root{3}{x}$dx=

分析 ①利用导数的运算法则进行求导即可;
②找出被积函数的原函数,计算定积分.

解答 解:①y'=$(\frac{x}{(2x+3)^{3}})^{'}$=$\frac{x′(2x+3)^{3}-x×6(2x+3)^{2}}{(2x+1)^{6}}$=$\frac{2x+3-6x}{(2x+3)^{4}}=\frac{3-4x}{(2x+1)^{4}}$;
②${∫}_{-1}^{8}$$\root{3}{x}$dx=${∫}_{-1}^{8}{x}^{\frac{1}{3}}dx$=$\frac{3}{4}{x}^{\frac{4}{3}}{|}_{-1}^{8}$=$\frac{45}{4}$.

点评 本题考查了导数和定积分的运算;熟记运算法则是解答的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网