题目内容

13.已知函数f(x)=|x+1|+|x+2|
(Ⅰ)解不等式:f(x)≤5
(Ⅱ)若对任意的x∈R,f(x)≥a2-2a恒成立,求实数a的取值范围.

分析 (Ⅰ)通过讨论x的范围,求出不等式的解集即可;
(Ⅱ)求出f(x)的最小值,问题转化为a2-2a≤1,解出即可.

解答 解:(Ⅰ)f(x)≤5,
即|x+1|+|x+2|≤5,
故$\left\{\begin{array}{l}{x≥-1}\\{x+1+x+2≤5}\end{array}\right.$或$\left\{\begin{array}{l}{-2<x<-1}\\{-x-1+x+2≤5}\end{array}\right.$或$\left\{\begin{array}{l}{x≤-2}\\{-x-1-x-2≤5}\end{array}\right.$,
解得:-4≤x≤1;
故不等式的解集是[-4,1];
(Ⅱ)f(x)=|x+1|+|x+2|≥|x+1-x-2|=1,
若对任意的x∈R,f(x)≥a2-2a恒成立,
即a2-2a≤1,解得:1-$\sqrt{2}$≤a≤1+$\sqrt{2}$.

点评 本题考查了解绝对值不等式问题,考查函数恒成立问题,是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网