题目内容

9.已知数列{an}的前n项和为Sn,a1=1,且an+1=1-$\frac{S_n}{2}$.
(Ⅰ)求{an}的通项公式;
(Ⅱ)若{Sn+λ(n+$\frac{1}{2^n}$)}为等差数列,求λ的值.

分析 (I)利用递推关系、等比数列的通项公式即可得出.
(II)利用等比数列的前n项和公式、等差数列的通项公式即可得出.

解答 解:(Ⅰ)依题意,可得Sn=2-2an+1,①
当n≥2时,Sn-1=2-2an,②…(1 分)
①-②,得an=2an-2an+1,…(3 分)
故$\frac{{{a_{n+1}}}}{a_n}=\frac{1}{2}$(n≥2).…(4 分)
因为a1=1,${a_2}=1-\frac{a_1}{2}=\frac{1}{2}$,…(5 分)
所以{an}是首项为1,公比为$\frac{1}{2}$的等比数列,故${a_n}={(\frac{1}{2})^{n-1}}$.…(6 分)
(Ⅱ)解:由(Ⅰ)可得${S_n}=\frac{{1-{{(\frac{1}{2})}^n}}}{{1-\frac{1}{2}}}=2-\frac{1}{{{2^{n-1}}}}$.…(8 分)
由$\{{S_n}+λ(n+\frac{1}{2^n})\}$为等差数列,
则${S_1}+λ(1+\frac{1}{2})$,${S_2}+λ(2+\frac{1}{4})$,${S_3}+λ(3+\frac{1}{8})$成等差数列.…(10分)
即$2({S_2}+\frac{9λ}{4})={S_1}+\frac{3λ}{2}+{S_3}+\frac{25λ}{8}$,
故$2(\frac{3}{2}+\frac{9λ}{4})=1+\frac{3λ}{2}+\frac{7}{4}+\frac{25λ}{8}$,…(12分)
解得λ=2.…(13分)

点评 本题考查了等差数列与等比数列的通项公式及其前n项和公式、递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网