题目内容
4.在数列{an}中,a1=1,${a_n}=1+\frac{1}{{{a_{n-1}}}}(n≥2)$,则a4=( )| A. | $\frac{3}{2}$ | B. | $\frac{5}{3}$ | C. | $\frac{7}{4}$ | D. | $\frac{8}{5}$ |
分析 利用数列的递推关系式,逐步求解即可.
解答 解:在数列{an}中,a1=1,${a_n}=1+\frac{1}{{{a_{n-1}}}}(n≥2)$,
则a2=1+1=2,
a3=1+$\frac{1}{2}$=$\frac{3}{2}$.
a4=1+$\frac{2}{3}$=$\frac{5}{3}$.
故选:B.
点评 本题考查数列的递推关系式的应用,考查计算能力.
练习册系列答案
相关题目
15.已知$cos(\frac{π}{3}+α)=\frac{1}{3}$,则$sin(\frac{5}{6}π+α)$=( )
| A. | .$\frac{1}{3}$ | B. | $-\frac{1}{3}$ | C. | .$\frac{{2\sqrt{2}}}{3}$ | D. | .$-\frac{{2\sqrt{2}}}{3}$ |
16.某商品在销售过程中投入的销售时间x与销售额y的统计数据如下表:
用线性回归分析的方法预测该商品6月份的销售额.
(参考公式:$\widehat{b}$=$\frac{{\sum_{i=1}^n{\;}({x_i}-_x^-)({y_i}-_y^-)}}{{\sum_{i=1}^n{\;}{{({x_i}-_x^-)}^2}}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$,其中$\overline{x}$,$\overline{y}$表示样本平均值)
| 销售时间x(月) | 1 | 2 | 3 | 4 | 5 |
| 销售额y(万元) | 0.4 | 0.5 | 0.6 | 0.6 | 0.4 |
(参考公式:$\widehat{b}$=$\frac{{\sum_{i=1}^n{\;}({x_i}-_x^-)({y_i}-_y^-)}}{{\sum_{i=1}^n{\;}{{({x_i}-_x^-)}^2}}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$,其中$\overline{x}$,$\overline{y}$表示样本平均值)
14.已知直线l过点P(1,2),且与x轴、y轴的正半轴分别交于A,B两点,则当△AOB的面积取得最小值时,直线l的方程为( )
| A. | 2x+y-4=0 | B. | x-2y+3=0 | C. | x+y-3=0 | D. | x-y+1=0 |