题目内容
11.若点P是双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的渐近线上任意一点,下列正确的是( )| A. | 存在过点P的直线与双曲线相切 | |
| B. | 不存在过点P的直线与双曲线相切 | |
| C. | 至少存在一条过点P的直线与该双曲线没有交点 | |
| D. | 存在唯一过点P的直线与该双曲线没有交点 |
分析 根据双曲线渐近线的性质,即可得出结论.
解答 解:若点P是双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的渐近线上任意一点,则
P在无穷远时,A不成立;存在过点P的直线与双曲线相切,比如切点为顶点,B不成立;
至少存在一条过点P的直线与该双曲线没有交点,正确;
过点P的直线与该双曲线没有交点的直线有无数条,D不成立
故选C.
点评 本题考查双曲线的方程与性质,考查学生的理解能力,比较基础.
练习册系列答案
相关题目
1.设$lnx=\frac{{{{ln}^2}sinα}}{lnb},lny=\frac{{{{ln}^2}cosα}}{lnb},lnz=\frac{{{{ln}^2}sinαcosα}}{lnb}$,若$α∈({\frac{π}{4},\frac{π}{2}}),b∈({0,1})$,则x,y,z的大小关系为( )
| A. | x>y>z | B. | y>x>z | C. | z>x>y | D. | x>z>y |
3.设直线l与抛物线x2=4y相交于A,B两点,与圆x2+(y-5)2=r2(r>0)相切于点M,且M为线段AB中点,若这样的直线l恰有4条,则r的取值范围是( )
| A. | (1,3) | B. | (1,4) | C. | (2,3) | D. | (2,4) |
20.已知直线$\left\{\begin{array}{l}x=3+4t\\ y=-4+3t\end{array}\right.$,则下列说法错误的是( )
| A. | 直线的倾斜角为$arctan\frac{3}{4}$ | |
| B. | 直线必过点$({1,-\frac{11}{2}})$ | |
| C. | 当t=1时,直线上对应点到点(1,2)的距离是$3\sqrt{2}$ | |
| D. | 直线不经过第二象限 |
7.函数y=x-2是( )
| A. | 奇函数 | B. | 偶函数 | ||
| C. | 非奇非偶函数 | D. | 既是奇函数又是偶函数 |