题目内容

14.已知O为椭圆中心,F1为椭圆的左焦点,A,B分别为椭圆的右顶点与上顶点,P为椭圆上一点,若PF1⊥F1A,PO∥AB,则该椭圆的离心率为$\frac{\sqrt{2}}{2}$.

分析 画出图形,利用已知条件列出方程,求解即可.

解答 解:O为椭圆中心,F1为椭圆的左焦点,A,B分别为椭圆的右顶点与上顶点,P为椭圆上一点,若PF1⊥F1A,PO∥AB,如图:可得:$\frac{P{F}_{1}}{OB}=\frac{O{F}_{1}}{OA}$,$\frac{c}{a}$=$\frac{\frac{{b}^{2}}{a}}{b}$=$\frac{b}{a}$,可得b=c,a=$\sqrt{2}$c,
所以椭圆的离心率为:$\frac{\sqrt{2}}{2}$.
故答案为:$\frac{{\sqrt{2}}}{2}$.

点评 本题考查椭圆的简单性质的应用,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网