题目内容

已知直线 l:(1+
3
λ)x-(3-2λ)y-(
3
+3λ)=0(λ∈R),一定经过椭圆C(中心在原点,焦点在x轴上)的焦点F,且椭圆C上的点到焦点F的最大距离为2+
3

(1)求椭圆C的标准方程;
(2)若斜率为k(k≠0)的直线n交椭圆C与A、B两点,且kOA、k、kOB成等差数列,点M(1,1),求S△ABM的最大值.
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线的定义、性质与方程
分析:(1)确定直线恒过定点(
3
,0),即F(
3
,0),可得c,利用椭圆C上的点到焦点F的最大距离为2+
3
,可得a,从而可得b,则椭圆的方程可求;
(2)确定直线n的方程为y=kx,代入椭圆方程,借助于弦长公式求出|AB|的长度,由点到直线的距离公式求出M到直线y=kx的距离,写出三角形AOB的面积后转化为含有k的代数式,利用导数法求最值.
解答: 解:(1)直线 l:(1+
3
λ)x-(3-2λ)y-(
3
+3λ)=0(λ∈R),可化为
(x-3y-
3
)+λ(
3
x+2y-3)=0,
由x-3y-
3
=0,且
3
x+2y-3=0,可得x=
3
,y=0,
∴直线恒过定点(
3
,0),即F(
3
,0),
∴c=
3

∵椭圆C上的点到焦点F的最大距离为2+
3

∴a+c=2+
3

∴a=2,
∴b=1,
∴椭圆C的标准方程为
x2
4
+y2=1

(2)设直线n的方程为y=kx+m,A(x1,y1),(x2,y2),则
∵kOA、k、kOB成等差数列,
∴m(x1+x2)=0,
∴m=0,
∴直线n的方程为y=kx
代入椭圆方程得(1+4k2)x2=4,
∴|AB|=
4
1+k2
1+4k2

∵M到y=kx的距离为d=
|k-1|
k2+1

∴S=
1
2
4
1+k2
1+4k2
|k-1|
k2+1
=
2|k-1|
1+4k2

∴S2=
4(k-1)2
1+4k2

∴(S2)′=
8(k-1)(4k+1)
(1+4k2)2

∴k<-
1
4
,(S2)′>0,-
1
4
<k<1,(S2)′<0,k>1,(S2)′>0,
∴k=-
1
4
时,S取得最大值
5
点评:本题考查了椭圆的标准方程,考查了直线与圆锥曲线的关系,考查弦长问题、最值问题.属难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网