题目内容
17.已知抛物线y2=6x,定点A(2,3),F为焦点,P为抛物线上的动点,则|PF|+|PA|的最小值为( )| A. | 5 | B. | 4.5 | C. | 3.5 | D. | 不能确定 |
分析 如图所示,过P作PM⊥准线l,垂足为M.则|PF|=|PM|,当且仅当A,P,M三点共线时,|PF|+|PA|取得最小值|AM|.
解答 解:如图所示,过
P作PM⊥准线l,垂足为M.
则|PF|=|PM|,
当且仅当A,P,M三点共线时,|PF|+|PA|取得最小值=2+$\frac{6}{4}$=$\frac{7}{2}$.
故选:C.
点评 本题考查了抛物线的定义、三点共线,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
7.下面命题中假命题是( )
| A. | ?x∈R,3x>0 | |
| B. | ?α,β∈R,使sin(α+β)=sinα+sinβ | |
| C. | 命题“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1<3x” | |
| D. | ?m∈R,使f(x)=mx${\;}^{{m}^{2}+2m}$是幂函数,且在(0,+∞)上单调递增 |
8.已知函数f(x)=$\left\{\begin{array}{l}{(1-x)^{3},x<1}\\{(x-1)^{3},x≥1}\end{array}\right.$,若关于x的不等式f(x2-2x+2)<f(1-a2x2)的解集中有且仅有三个整数,则实数a的取值范围是( )
| A. | [-$\frac{3}{4}$,-$\frac{2}{3}$)∪($\frac{2}{3}$,$\frac{3}{4}$] | B. | ($\frac{2}{3}$,$\frac{3}{4}$] | C. | [-$\frac{3}{4}$,-$\frac{1}{2}$)∪($\frac{1}{2}$,$\frac{3}{4}$] | D. | [-$\frac{4}{5}$,-$\frac{3}{4}$)∪($\frac{3}{4}$,$\frac{4}{5}$] |
12.已知g(x)=sin2x的图象,要得到f(x)=sin(2x-$\frac{π}{4}$),只需将g(x)的图象( )
| A. | 向右平移$\frac{π}{8}$个单位 | B. | 向左平移$\frac{π}{8}$个单位 | ||
| C. | 向右平移$\frac{π}{4}$个单位 | D. | 向左平移$\frac{π}{4}$个单位 |
2.下列说法的正确的是( )
| A. | 经过定点P0(x0,y0)的直线都可以用方程y-y0=k(x-x0)表示 | |
| B. | 经过定点A(0,b)的直线都可以用方程y=kx+b表示 | |
| C. | 不经过原点的直线都可以用方程$\frac{x}{a}$+$\frac{y}{b}$=1表示P1(x1,y1)、P2(x2,y2) | |
| D. | 经过任意两个不同的点的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)来表示 |