题目内容

20.已知函数f(x)=$\left\{\begin{array}{l}{(lnx)^{2}+alnx+b,x>0}\\{{e}^{x}+\frac{1}{4},x≤0}\end{array}\right.$,且f(e)=f(1),f(e2)=f(0)+$\frac{11}{4}$,则函数f(x)的值域为(  )
A.($\frac{1}{4}$,$\frac{5}{4}$]∪($\frac{7}{4}$,+∞)B.($\frac{1}{4}$,$\frac{7}{4}$)C.(-∞,$\frac{1}{4}$]∪[$\frac{5}{4}$,+∞)D.($\frac{1}{4}$,$\frac{5}{4}$]∪[$\frac{7}{4}$,+∞)

分析 利用已知条件列出方程求出a,b,然后利用分段函数分别求解函数的值域即可.

解答 解:函数f(x)=$\left\{\begin{array}{l}{(lnx)^{2}+alnx+b,x>0}\\{{e}^{x}+\frac{1}{4},x≤0}\end{array}\right.$,且f(e)=f(1),f(e2)=f(0)+$\frac{11}{4}$,
可得:$\left\{\begin{array}{l}{1+a+b=b}\\{4+2a+b=4}\end{array}\right.$,解得a=-1,b=2,
所以当x>0时,f(x)=(lnx)2-lnx+2=(lnx-$\frac{1}{2}$)2+$\frac{7}{4}$$≥\frac{7}{4}$,
当x≤0时,可得$\frac{1}{4}<{e}^{x}+\frac{1}{4}≤{e}^{0}+\frac{1}{4}$=$\frac{5}{4}$,
则函数f(x)的值域为($\frac{1}{4}$,$\frac{5}{4}$]∪[$\frac{7}{4}$,+∞).
故选:D.

点评 本题考查分段函数的应用,函数的值域的求法,考查转化思想以及计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网