题目内容
【题目】已知
为抛物线
的焦点,以
为圆心作半径为
的圆
,圆
与
轴的负半轴交于点
,与抛物线
分别交于点
.
(1)若
为直角三角形,求半径
的值;
(2)判断直线
与抛物线
的位置关系,并给出证明.
【答案】(1)
;(2) 直线
与抛物线
相切.
【解析】
(1)由对称性可知,
为等腰直角三角形,且
轴,
为直径,再根据
的横坐标为
,代入抛物线
的方程求解纵坐标即可得半径
.
(2)画图观察可知
与抛物线
相切,再设
,根据圆的半径相等求得点
坐标.再根据导数的几何意义求解抛物线
在
处的切线斜率
,进而证明
与直线
的斜率相等即可.
(1)由抛物线与圆的对称性可知, 点
关于
轴对称,故
为直角.故
为等腰直角三角形, 且
轴,
为直径.故
的横坐标为
,代入
可得
.
故
.
(2)不妨设
.则根据抛物线的定义以及圆的半径相等有
,故
的横坐标为
.即
.
故直线
的斜率为
.
又抛物线
的上半部分为函数
,故
,故在
处切线的斜率为
.故直线
为在
处切线.
故直线
与抛物线
相切.
![]()
练习册系列答案
相关题目
【题目】疫情期间,为了更好地了解学生线上学习的情况,某兴趣小组在网上随机抽取了100名学生对其线上学习满意情况进行调查,其中男女比例为2∶3,其中男生有24人满意,女生有12人不满意.
(1)完成
列联表,并回答是否有95%把握认为“线上学习是否满意与性别有关”
满意 | 不满意 | 合计 | |
男生 | |||
女生 | |||
合计 |
(2)从对线上学习满意的学生中,利用分层抽样抽取6名学生,再在6名学生中抽取3名,记抽到的女生人数为
,求
的分布列和数学期望.
参考公式:附:![]()
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| .072 | 2.706 | 3.842 | 5.024 | 6.635 | 7.879 | 10.828 |