题目内容
曲线y=exlnx在x=1处的切线方程是( )
| A、y=2e(x-1) |
| B、y=ex-1 |
| C、y=x-e |
| D、y=e(x-1) |
考点:利用导数研究曲线上某点切线方程
专题:导数的综合应用
分析:求导函数,切点切线的斜率,求出切点的坐标.,即可得到切线方程.
解答:
解:求曲线y=exlnx导函数,可得f′(x)=exlnx+
∴f′(1)=e,
∵f(1)=0,∴切点(1,0).
∴函数f(x)=exlnx在点(1,f(1))处的切线方程是:y-0=e(x-1),
即y=e(x-1)
故选:D.
| ex |
| x |
∴f′(1)=e,
∵f(1)=0,∴切点(1,0).
∴函数f(x)=exlnx在点(1,f(1))处的切线方程是:y-0=e(x-1),
即y=e(x-1)
故选:D.
点评:本题考查导数的几何意义,考查学生的计算能力,属于基本知识的考查.
练习册系列答案
相关题目
已知奇函数f(x)是R上的单调函数,若函数y=f(x2)+f(k-x)只有一个零点,则实数k的值是( )
A、
| ||
| B、2 | ||
C、
| ||
| D、1 |
设m为直线,α、β、γ为三个不同的平面,下列说法正确的是( )
| A、若m∥α,α⊥β,则m⊥β |
| B、若m?α,α∥β,则m∥β |
| C、若m⊥α,α⊥β,则m∥β |
| D、若α⊥β,α⊥γ,则β∥γ |
函数y=
+
-
的值域为( )
| |sinx| |
| sinx |
| |cosx| |
| cosx |
| 2|sinxcosx| |
| sinxcosx |
| A、{±2,±4} |
| B、{0,±2,±4} |
| C、{0,2,-4} |
| D、{0,-2,4} |