题目内容
数列{an}的前n项和为Sn,且Sn=
(an-1),数列{bn}满足bn=
bn-1-
(n≥2),且b1=3.
(1)求数列{an}与{bn}的通项公式;
(2)设数列{cn}满足cn=an·log2(bn+1),其前n项和为Tn,求Tn.
解析:(1)对于数列{an}有Sn=
(an-1),①
Sn-1=
(an-1-1)(n≥2),②
由①-②,得an=
(an-an-1),即an=3an-1,
n=1时,S1=
(a1-1)=a1,解得a1=3,
则an=a1·qn-1=3·3n-1=3n.
对于数列{bn},有bn=
bn-1-
(n≥2),
可得bn+1=
bn-1+
,即
=
.
bn+1=(b1+1)
n-1=4
n-1=42-n,
即bn=42-n-1.
(2)由(1)可知
cn=an·log2(bn+1)=3n·log2 42-n
=3n·log2 24-2n=3n(4-2n).
Tn=2·31+0·32+(-2)·33+…+(4-2n)·3n,③
3Tn=2·32+0·33+…+(6-2n)·3n+(4-2n)·3n+1,④
由③-④,得
-2Tn=2·3+(-2)·32+(-2)·33+…+(-2)·3n-(4-2n)·3n+1
=6+(-2)(32+33+…+3n)-(4-2n)·3n+1,
则Tn=-3+
+(2-n)·3n+1
=-
+
·3n+1.
练习册系列答案
相关题目