题目内容


数列{an}的前n项和为Sn,且Sn(an-1),数列{bn}满足bnbn-1(n≥2),且b1=3.

(1)求数列{an}与{bn}的通项公式;

(2)设数列{cn}满足cnan·log2(bn+1),其前n项和为Tn,求Tn.


解析:(1)对于数列{an}有Sn(an-1),①

Sn-1(an-1-1)(n≥2),②

由①-②,得an(anan-1),即an=3an-1

n=1时,S1(a1-1)=a1,解得a1=3,

ana1·qn-1=3·3n-1=3n.

对于数列{bn},有bnbn-1(n≥2),

可得bn+1=bn-1,即.

bn+1=(b1+1)n-1=4n-1=42n

bn=42n-1.

(2)由(1)可知

cnan·log2(bn+1)=3n·log2 42n

=3n·log2 24-2n=3n(4-2n).

Tn=2·31+0·32+(-2)·33+…+(4-2n)·3n,③

3Tn=2·32+0·33+…+(6-2n)·3n+(4-2n)·3n+1,④

由③-④,得

-2Tn=2·3+(-2)·32+(-2)·33+…+(-2)·3n-(4-2n)·3n+1

=6+(-2)(32+33+…+3n)-(4-2n)·3n+1

Tn=-3++(2-n)·3n+1

=-·3n+1.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网