题目内容

设f(θ)=
2cos3θ+sin2(2π-θ)+sin(
π
2
+θ)-3
2+2sin2(
π
2
+θ)-sin(
2
-θ)
,求f(
π
3
)的值.
考点:三角函数的化简求值
专题:三角函数的求值
分析:利用三角函数的诱导公式化简,然后代入θ=
π
3
求得答案.
解答: 解:f(θ)=
2cos3θ+sin2(2π-θ)+sin(
π
2
+θ)-3
2+2sin2(
π
2
+θ)-sin(
2
-θ)

=
2cos3θ+sin2θ+cosθ-3
2+2cos2θ+cosθ

∴f(
π
3
)=
2cos3
π
3
+sin2
π
3
+cos
π
3
-3
2+2cos2
π
3
+cos
π
3

=
2×(
1
2
)3+(
3
2
)2+
1
2
-3
2+2×(
1
2
)2+
1
2

=-
1
2
点评:本题考查了三角函数的诱导公式,考查了三角函数的值,是基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网