题目内容

17.已知函数f(x)=xlnx+2,g(x)=x2-mx.
(1)求f(x)在点(1,f(1))处的切线方程;
(2)求函数f(x)在[t,t+2](t>0)上的最小值;
(3)若存在${x_0}∈[{\frac{1}{e},e}]$使得mf'(x)+g(x)≥2x+m成立,求实数m的取值范围.

分析 (1)求出函数的导数,计算f(1),f′(1)的值,求出切线方程即可;
(2)求出f'(x)=lnx+1,推出单调区间,然后求解函数的最小值.
(3)存在x0∈[$\frac{1}{e}$,e]使得mf'(x)+g(x)≥2x+m成立,转化为存在x0∈[$\frac{1}{e}$,e]使得m≤( $\frac{2x{-x}^{2}}{lnx-x}$)max成立,令k(x)=$\frac{2x{-x}^{2}}{lnx-x}$,x∈[$\frac{1}{e}$,e],求出函数的导数,通过判断导函数的符号,求出最大值,

解答 解:(1)由已知f(1)=2,f′(x)=lnx+1,则f′(1)=1,
所以在(1,f(1))处的切线方程为:y-2=x-1,即为x-y+1=0;
(2)f'(x)=lnx+1,
令f'(x)>0,解得x>$\frac{1}{e}$;令f'(x)<0,解得0<x<$\frac{1}{e}$,
∴f(x)在(0,$\frac{1}{e}$)递减,在($\frac{1}{e}$,+∞)递增,
若t≥$\frac{1}{e}$,则f(x)在[t,t+2]递增,
∴f(x)min=f(t)=tlnt+2;
若0<t<$\frac{1}{e}$,则f(x)在[t,$\frac{1}{e}$)递减,在($\frac{1}{e}$,t+2]递增,
∴f(x)min=f($\frac{1}{e}$)=2-$\frac{1}{e}$.
(3)若存在x0∈[$\frac{1}{e}$,e]使得mf'(x)+g(x)≥2x+m成立,
即存在x0∈[$\frac{1}{e}$,e]使得m≤( $\frac{2x{-x}^{2}}{lnx-x}$)max成立,
令k(x)=$\frac{2x{-x}^{2}}{lnx-x}$,x∈[$\frac{1}{e}$,e],则k′(x)=$\frac{(x-1)(2lnx+x+2)}{{(lnx-x)}^{2}}$,
易得2lnx+x+2>0,
令k'(x)>0,解得x>1;令k'(x)<0,解得x<1,
故k(x)在[$\frac{1}{e}$,1)递减,在(1,e]递增,
故k(x)的最大值是k($\frac{1}{e}$)或k(e),
而k( $\frac{1}{e}$)=-$\frac{2e-1}{e(e+1)}$<k(e)=$\frac{e(e-2)}{e-1}$,
故m≤$\frac{e(e-2)}{e-1}$.

点评 本题考查函数的导数的应用,函数的最值以及函数的单调区间的求法,考查转化思想以及计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网