ÌâÄ¿ÄÚÈÝ
5£®ÔÚ¼«×ø±êϵÖУ¬ÇúÏßC1£º¦Ñsin2¦È=4cos¦È£¬ÒÔ¼«µãÎª×ø±êԵ㣬¼«ÖáΪÖáÕý°ëÖὨÁ¢Ö±½Ç×ø±êϵxOy£¬ÇúÏßC2µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£®£¨1£©ÇóC1¡¢C2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÈôÇúÏßC1ÓëÇúÏßC2½»ÓÚA¡¢BÁ½µã£¬ÇÒ¶¨µãPµÄ×ø±êΪ£¨2£¬0£©£¬Çó|PA|•|PB|µÄÖµ£®
·ÖÎö £¨1£©ÇúÏßC1µÄ¼«×ø±ê·½³Ìת»¯Îª¦Ñ2sin2¦È=4¦Ñcos¦È£¬ÓÉ´ËÄÜÇó³öÇúÏßC1µÄÖ±½Ç×ø±ê·½³Ì£¬ÇúÏßC2µÄ²ÎÊý·½³ÌÏûÈ¥²ÎÊýt£¬ÄÜÇó³öÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£®
£¨2£©ÇúÏßC2µÄ²ÎÊý·½³Ì´úÈëy2=4x£¬µÃ3t2-8t-32=0£¬ÓÉ´ËÄÜÇó³ö|PA|•|PB|µÄÖµ£®
½â´ð £¨ ±¾ Ìâ Âú ·Ö 10 ·Ö £©
½â£º£¨1£©¡ßÇúÏßC1£º¦Ñsin2¦È=4cos¦È£¬¡à¦Ñ2sin2¦È=4¦Ñcos¦È£¬
¡àÇúÏßC1µÄÖ±½Ç×ø±ê·½³ÌΪy2=4x£®
¡ßÇúÏßC2µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£®
¡àÇúÏßC2ÏûÈ¥²ÎÊýt£¬µÃÇúÏßC2µÄÖ±½Ç×ø±ê·½³ÌΪ$\sqrt{3}x-y-2\sqrt{3}$=0£®
£¨2£©ÇúÏßC2µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©´úÈëy2=4x£¬
µÃ$\frac{3}{4}{t}^{2}$=8+2t£¬¼´3t2-8t-32=0£¬
¡÷=£¨-8£©2-4¡Á3¡Á£¨-32£©=448£¾0£¬
t1•t2=-$\frac{32}{3}$£¬
¡à|PA|•|PB|=|t1|•|t2|=|t1t2|=$\frac{32}{3}$£®
µãÆÀ ±¾Ì⿼²éÇúÏßµÄÖ±½Ç×ø±ê·½³ÌµÄÇ󷨣¬¿¼²éÁ½Ï߶εij˻ýµÄÇ󷨣¬¿¼²éÖ±½Ç×ø±ê·½³Ì¡¢¼«×ø±ê·½³ÌµÄ»¥»¯µÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮
| A£® | 0 | B£® | -4 | C£® | $-\frac{14}{3}$ | D£® | -6 |