ÌâÄ¿ÄÚÈÝ
7£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊe=$\frac{\sqrt{2}}{2}$£¬Ôµãµ½Ö±Ïß$\frac{x}{a}$+$\frac{y}{b}$=1µÄ¾àÀëΪ$\frac{2\sqrt{3}}{3}$£®£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÈôµãA£¬BÊÇÍÖÔ²CÉϹØÓÚÖ±Ïßy=kx+1¶Ô³ÆµÄÁ½µã£¬ÇóʵÊýkµÄȡֵ·¶Î§£®
·ÖÎö £¨1£©¸ù¾ÝÀëÐÄÂʹ«Ê½ºÍµãµ½Ö±ÏߵľàÀ빫ʽ£¬½áºÏb2=a2-c2£¬¼´¿ÉÇóµÃÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬y1¡Ùy2£¬BAµÄÖе㣨x0£¬y0£©£¬Ö±Ïßy=kx+1ÇÒk¡Ù0£¬ºã¹ý£¨0£¬1£©£¬µãB£¬AÔÚÍÖÔ²ÉÏ£¬»¯¼ò¿ÉµÃy0=$\frac{{y}_{1}+{y}_{2}}{2}$=-1£¬ABµÄÖеãÔÚy=kx+1ÉÏ£¬½âµÃx0£¬ÀûÓÃ$\left\{\begin{array}{l}{{x}^{2}+2{y}^{2}=4}\\{y=-1}\end{array}\right.$£¬¿ÉµÃx=¡À$\sqrt{2}$£¬ÍƳökµÄ²»µÈʽ£¬µÃµ½½á¹û£®
½â´ð ½â£º£¨1£©ÓÉÒÑÖªe=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬¼´c2=$\frac{1}{2}$a2£¬b2=a2-c2=$\frac{1}{2}$a2£¬
Ե㵽ֱÏß$\frac{x}{a}$+$\frac{y}{b}$=1µÄ¾àÀëΪ$\frac{2\sqrt{3}}{3}$£¬
¼´ÓÐ$\frac{ab}{\sqrt{{a}^{2}+{b}^{2}}}$=$\frac{2\sqrt{3}}{3}$£¬
¡àa=2£¬b=$\sqrt{2}$£¬¡àa2=4£¬¡àb2=2£¬
¡àÍÖÔ²CµÄ·½³ÌΪ£º$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1£»
£¨2£©ÍÖÔ²CÉÏ´æÔÚµãB£¬A¹ØÓÚÖ±Ïßy=kx+1¶Ô³Æ£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬y1¡Ùy2
ABµÄÖе㣨x0£¬y0£©£¬Ö±Ïßy=kx+1ÇÒk¡Ù0£¬ºã¹ý£¨0£¬1£©£¬
Ôòx12+£¨y1-1£©2=x22+£¨y2-1£©2£¬
µãB£¬AÔÚÍÖÔ²ÉÏ£¬
¡àx12=4-2y12£¬x22=4-2y22£¬¡à4-2y12+£¨y1-1£©2=4-2y22+£¨y2-1£©2£¬
»¯¼ò¿ÉµÃ£ºy12-y22=-2£¨y1-y2£©£¬¼´y1+y2=-2£¬
¡ày0=$\frac{{y}_{1}+{y}_{2}}{2}$=-1£¬
ÓÖÒòΪABµÄÖеãÔÚy=kx+1ÉÏ£¬ËùÒÔy0=kx0+1£¬x0=-$\frac{2}{k}$£¬
ÓÉ$\left\{\begin{array}{l}{{x}^{2}+2{y}^{2}=4}\\{y=-1}\end{array}\right.$£¬¿ÉµÃx=¡À$\sqrt{2}$£¬
¡à0£¼-$\frac{2}{k}$£¼$\sqrt{2}$£¬»ò-$\sqrt{2}$£¼-$\frac{2}{k}$£¼0£¬
¼´k£¼-$\sqrt{2}$»òk£¾$\sqrt{2}$£®
ÔòkµÄȡֵ·¶Î§ÊÇ£¨-¡Þ£¬-$\sqrt{2}$£©¡È£¨$\sqrt{2}$£¬+¡Þ£©
µãÆÀ ±¾Ì⿼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµµÄ×ÛºÏÓ¦Ó㬵㵽ֱÏߵľàÀ빫ʽ£¬¶Ô³ÆÖªÊ¶µÄÓ¦Ó㬿¼²éת»¯Ë¼ÏëÒÔ¼°·ÖÎöÎÊÌâ½â¾öÎÊÌâµÄÄÜÁ¦£®
| A£® | £¨-¡Þ£¬1£© | B£® | £¨1£¬2£© | C£® | £¨2£¬3£© | D£® | £¨3£¬+¡Þ£© |