题目内容
10.若$f(x)=\left\{\begin{array}{l}{({\frac{1}{3}})^x},x≤0\\{log_3}x,x>0\end{array}\right.$,则$f({f({\frac{1}{9}})})$=( )| A. | -2 | B. | -3 | C. | 9 | D. | $\frac{1}{9}$ |
分析 由已知得$f(\frac{1}{9})$=$lo{g}_{3}\frac{1}{9}=-2$,从而$f({f({\frac{1}{9}})})$=f(-2),由此能求出结果.
解答 解:∵$f(x)=\left\{\begin{array}{l}{({\frac{1}{3}})^x},x≤0\\{log_3}x,x>0\end{array}\right.$,
∴$f(\frac{1}{9})$=$lo{g}_{3}\frac{1}{9}=-2$,
$f({f({\frac{1}{9}})})$=f(-2)=$(\frac{1}{3})^{-2}=9$.
故选:C.
点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
练习册系列答案
相关题目
18.已知随机变量X的分布列为$P(X=k)=\frac{a}{2^k},k=1,2,…10$,则P(2<X≤4)=( )
| A. | $\frac{16}{341}$ | B. | $\frac{32}{341}$ | C. | $\frac{64}{341}$ | D. | $\frac{128}{341}$ |
15.如果关于x的不等式(a2-4)x2+(a+2)x-1≥0的解集是空集,则实数a的取值范围是( )
| A. | $-2≤a<\frac{6}{5}$ | B. | $-2≤a≤\frac{5}{6}$ | C. | -2≤a<1 | D. | -2≤a≤1 |
20.已知函数f(x)=$\sqrt{2}sinωxcosωx+\sqrt{2}{cos^2}ωx-\frac{{\sqrt{2}}}{2}({ω>0})$,若函数f(x)在$({\frac{π}{2},π})$上单调递减,则实数ω的取值范围是( )
| A. | $[{\frac{1}{4},\frac{5}{8}}]$ | B. | $[{\frac{1}{2},\frac{5}{4}}]$ | C. | $({0,\frac{1}{2}}]$ | D. | $({0,\frac{1}{4}}]$ |