题目内容
1.一个几何体的三视图如图所示(单位:m),则该几何体的表面积为$55+4\sqrt{2}$.分析 通过三视图判断几何体的特征,利用三视图的数据,求出几何体的表面积即可.
解答
解:由三视图可知几何体是组合体,下部是长方体,底面边长为3和4,高为2,
上部是放倒的四棱柱,底面为直角梯形,底面直角边长为2和1,高为1,棱柱的高为4,
所以几何体看作是放倒的棱柱,底面是6边形,
几何体的表面积为:[2×3+$\frac{(1+2)×1}{2}$]×2+(3+3+1+$\sqrt{2}$+1+2)×4=$55+4\sqrt{2}$.
故答案为:$55+4\sqrt{2}$.
点评 本题考查三视图与几何体的关系,判断三视图复原的几何体的形状是解题的关键,考查空间想象能力与计算能力.
练习册系列答案
相关题目
11.已知函数f(x)=log${\;}_{\frac{2}{3}}}$(x2-2x-3),给定区间E,对任意x1,x2∈E,当x1<x2时,总有f(x1)<f(x2),则下列区间可作为E的是( )
| A. | (-3,-1) | B. | (-1,0) | C. | (1,2) | D. | (3,6) |
9.下列函数,在区间(0,1)上为增函数的是( )
| A. | y=1-x | B. | y=-|x| | C. | $y=\frac{1}{x-1}$ | D. | $y={x^{\frac{1}{2}}}$ |
6.函数f(x)=$\frac{a{x}^{3}}{3}$+$\frac{a{x}^{2}}{2}$-2ax+2a+1的图象经过四个象限,则实数a的取值范围是( )
| A. | (-$\frac{6}{5}$,$\frac{3}{16}$) | B. | (-$\frac{8}{5}$,-$\frac{3}{16}$) | C. | (-$\frac{8}{5}$,-$\frac{1}{16}$) | D. | (-$\frac{6}{5}$,-$\frac{3}{16}$) |