题目内容
| 3 |
A、
| ||
| B、9π | ||
| C、12π | ||
| D、16π |
考点:球的体积和表面积
专题:计算题,空间位置关系与距离
分析:由题意推出MN⊥平面SAC,即SB⊥平面SAC,∠ASB=∠BSC=∠ASC=90°,将此三棱锥补成正方体,则它们有相同的外接球,正方体的对角线就是球的直径,求出直径即可求出球的体积.
解答:
解:∵M,N分别为棱SC,BC的中点,∴MN∥SB
∵三棱锥S-ABC为正棱锥,
∴SB⊥AC(对棱互相垂直)
∴MN⊥AC
又∵MN⊥AM,而AM∩AC=A,
∴MN⊥平面SAC,
∴SB⊥平面SAC
∴∠ASB=∠BSC=∠ASC=90°
以SA,SB,SC为从同一定点S出发的正方体三条棱,将此三棱锥补成以正方体,则它们有相同的外接球,
正方体的对角线就是球的直径.
∴2R=
SA=3,
∴R=
,
∴V=
πR3=
故选:A
∵三棱锥S-ABC为正棱锥,
∴SB⊥AC(对棱互相垂直)
∴MN⊥AC
又∵MN⊥AM,而AM∩AC=A,
∴MN⊥平面SAC,
∴SB⊥平面SAC
∴∠ASB=∠BSC=∠ASC=90°
以SA,SB,SC为从同一定点S出发的正方体三条棱,将此三棱锥补成以正方体,则它们有相同的外接球,
正方体的对角线就是球的直径.
∴2R=
| 3 |
∴R=
| 3 |
| 2 |
∴V=
| 4 |
| 3 |
| 9π |
| 2 |
故选:A
点评:本题考查了三棱锥的外接球的体积,考查空间想象能力.三棱锥扩展为正方体,它的对角线长就是外接球的直径,是解决本题的关键.
练习册系列答案
相关题目