题目内容

在平面直角坐标系xOy中,已知四边形OABC是等腰梯形,A(6,0),C(1,
3
)
,点,M满足
OM
=
1
2
OA
,点P在线段BC上运动(包括端点),如图.
(1)求∠OCM的余弦值;
(2)是否存在实数λ,使(
OA
OP
)⊥
CM
,若存在,求出满足条件的实数λ的取值范围,若不存在,请说明理由.
考点:数量积判断两个平面向量的垂直关系,数量积表示两个向量的夹角
专题:平面向量及应用
分析:(1)由题意求得
CM
CO
的坐标,再根据cos∠OCM=cos<
CO
CM
>=
CO
CM
|
CM
|•|
CM
|
,运算求得结果.
(2)设P(t,
3
)
,其中1≤t≤5,由(
OA
OP
)⊥
CM
,得(
OA
OP
)•
CM
=0
,可得(2t-3)λ=12.再根据t∈[1,
3
2
)∪(
3
2
,5],求得实数λ的取值范围.
解答: 解:(1)由题意可得
OA
=(6,0),
OC
=(1,
3
),
OM
=
1
2
OA
=(3,0)
CM
=(2,-
3
),
CO
=(-1,-
3
)

故cos∠OCM=cos<
CO
CM
>=
CO
CM
|
CM
|•|
CM
|
=
7
14

(2)设P(t,
3
)
,其中1≤t≤5,λ
OP
=(λt,
3
λ)
OA
OP
=(6-λt,-
3
λ),
CM
=(2,-
3
)

(
OA
OP
)⊥
CM

(
OA
OP
)•
CM
=0

即12-2λt+3λ=0,
可得(2t-3)λ=12.
t=
3
2
,则λ不存在,
t≠
3
2
,则λ=
12
2t-3

∵t∈[1,
3
2
)∪(
3
2
,5],
λ∈(-∞,-12]∪[
12
7
,+∞)
点评:本题主要考查用数量积表示两个两个向量的夹角,两个向量垂直的性质,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网