题目内容

在等差数列{an}中,已知S8=5,S16=14,则S24=
 
考点:等差数列的前n项和
专题:等差数列与等比数列
分析:由等差数列的性质得S8,S16-S8,S24-S16成等差数列,由此能求出S24
解答: 解:∵在等差数列{an}中,S8=5,S16=14,
∴S8,S16-S8,S24-S16成等差数列,
即5,9,S24-14成等差数列,
∴2×9=5+S24-14,
解得S24=27.
故答案为:27.
点评:本题考查等差数列的第24项的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网