题目内容
f(x)对任意x∈R都有f(x)+f(1-x)=
.
(Ⅰ)求f(
)和f(
)+f(
)(n∉N)的值.
(Ⅱ)数列{an}满足:an=f(0)+f(
)+f(
)+…+f(
)+f(1),数列{an}是等差数列吗?请给予证明;
试比较Tn与Sn的大小.
| 1 |
| 2 |
(Ⅰ)求f(
| 1 |
| 2 |
| 1 |
| n |
| n-1 |
| n |
(Ⅱ)数列{an}满足:an=f(0)+f(
| 1 |
| n |
| 2 |
| n |
| n-1 |
| n |
试比较Tn与Sn的大小.
分析:(Ⅰ)由f(x)对任意x∈R都有f(x)+f(1-x)=
,知f(
)+f(1-
)=f(
)+f(
)=
.由此能求出f(
)和f(
)+f(
)(n∉N)的值.
(Ⅱ)an=f(0)+f(
)+…+f(
)+f(1)又an=f(1)+f(
)+…+f(
)+f(0)两式相加2an=[f(0)+f(1)]+[f(
)+f(
)]+…+[f(1)+f(0)]=
.由此知数列{an}是等差数列.bn=
=
,Tn=
+
+…+
=16(1+
+
+…+
)≤16[1+
+
+…+
]=Sn.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n |
| n-1 |
| n |
(Ⅱ)an=f(0)+f(
| 1 |
| n |
| n-1 |
| n |
| n-1 |
| n |
| 1 |
| n |
| 1 |
| n |
| n-1 |
| n |
| n+1 |
| 2 |
| 4 |
| 4an-1 |
| 4 |
| n |
| b | 2 1 |
| b | 2 2 |
| b | 2 n |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| n(n-1) |
解答:解:(Ⅰ)∵f(x)对任意x∈R都有f(x)+f(1-x)=
,
∴f(
)+f(1-
)=f(
)+f(
)=
.
所以f(
)=
.
令x=
,
得f(
)+f(1-
)=
,
即f(
)+f(
)=
.
(Ⅱ)an=f(0)+f(
)+…+f(
)+f(1)
又an=f(1)+f(
)+…+f(
)+f(0)
两式相加2an=[f(0)+f(1)]+[f(
)+f(
)]+…+[f(1)+f(0)]=
.
所以an=
,n∈N,
又an+1-an=
-
=
.
故数列{an}是等差数列.
bn=
=
,
Tn=
+
+…+
=16(1+
+
+…+
)
≤16[1+
+
+…+
]
=16[1+(1-
)+(
-
)+…+(
-
)]
=16(2-
)=32-
=Sn
所以Tn≤Sn.
| 1 |
| 2 |
∴f(
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
所以f(
| 1 |
| 2 |
| 1 |
| 4 |
令x=
| 1 |
| n |
得f(
| 1 |
| n |
| 1 |
| n |
| 1 |
| 2 |
即f(
| 1 |
| n |
| n-1 |
| n |
| 1 |
| 2 |
(Ⅱ)an=f(0)+f(
| 1 |
| n |
| n-1 |
| n |
又an=f(1)+f(
| n-1 |
| n |
| 1 |
| n |
两式相加2an=[f(0)+f(1)]+[f(
| 1 |
| n |
| n-1 |
| n |
| n+1 |
| 2 |
所以an=
| n+1 |
| 4 |
又an+1-an=
| n+1+1 |
| 4 |
| n+1 |
| 4 |
| 1 |
| 4 |
故数列{an}是等差数列.
bn=
| 4 |
| 4an-1 |
| 4 |
| n |
Tn=
| b | 2 1 |
| b | 2 2 |
| b | 2 n |
=16(1+
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
≤16[1+
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| n(n-1) |
=16[1+(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
| 1 |
| n |
=16(2-
| 1 |
| n |
| 16 |
| n |
所以Tn≤Sn.
点评:本题考查数列与函数的综合,考查运算求解能力,推理论证能力;考查化归与转化思想.综合性强,难度大,有一定的探索性,对数学思维能力要求较高,是高考的重点.解题时要认真审题,仔细解答.
练习册系列答案
相关题目
定义在R上的函数f(x)对任意x∈R,都有f(x+2)=
,f(2)=
,则f(2010)等于( )
| 1-f(x) |
| 1+f(x) |
| 1 |
| 4 |
A、
| ||
B、
| ||
C、
| ||
D、
|
设偶函数f(x)对任意x∈R,都有f(x+3)=-
,且当x∈[-3,-2]时,f(x)=4x,则f(107.5)=( )
| 1 |
| f(x) |
| A、10 | ||
B、
| ||
| C、-10 | ||
D、-
|