题目内容
| lim |
| n→∞ |
| 2 |
| n |
由于
(1+
)n=e
∴
(1+
)n=
[(1+
)
] 2=e2
故答案为:e2
| lim |
| n→∞ |
| 1 |
| n |
∴
| lim |
| n→∞ |
| 2 |
| n |
| lim |
| n→∞ |
| 2 |
| n |
| n |
| 2 |
故答案为:e2
练习册系列答案
相关题目
| lim |
| n→∞ |
| 1+2+3+…+n |
| n2 |
| A、2 | ||
| B、4 | ||
C、
| ||
| D、0 |
题目内容
| lim |
| n→∞ |
| 2 |
| n |
| lim |
| n→∞ |
| 1 |
| n |
| lim |
| n→∞ |
| 2 |
| n |
| lim |
| n→∞ |
| 2 |
| n |
| n |
| 2 |
| lim |
| n→∞ |
| 1+2+3+…+n |
| n2 |
| A、2 | ||
| B、4 | ||
C、
| ||
| D、0 |