题目内容

(2004•黄浦区一模)
lim
n→∞
(
1+2+…+n
n+2
-
n
2
)
?
-
1
2
-
1
2
分析:由于
1+2+…+n
n+2
-
n
2
=
n(n+1)
2(n+2)
-
n
2
=
-n
2(n+2)
=
-1
2+
2
n
,代入可求极限
解答:解:
lim
n→∞
(
1+2+…+n
n+2
-
n
2
)
=
lim
n→∞
 (
n(1+n)
2
n+2
-
n
2
)

=
lim
n→∞
-n
2(n+2)
=-
1
2

故答案为:-
1
2
点评:本题主要考查了数列的极限的求解,解题的关键 是要 熟练应用等差数列 的 求和公式,属于基本运算试题
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网