题目内容

15.已知实数x,y满足$\left\{\begin{array}{l}2x+y-4≥0\\ x-y-1≤0\\ y≤3\end{array}\right.$,则z=x-3y的最大值是$-\frac{1}{3}$.

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}2x+y-4≥0\\ x-y-1≤0\\ y≤3\end{array}\right.$作出可行域如图,

联立$\left\{\begin{array}{l}{x-y-1=0}\\{2x+y-4=0}\end{array}\right.$,解得A($\frac{5}{3}$,$\frac{2}{3}$).
化目标函数z=x-3y为y=$\frac{x}{3}-\frac{z}{3}$,
由图可知,当直线y=$\frac{x}{3}-\frac{z}{3}$过A时,直线在y轴上的截距最小,z有最大值为$-\frac{1}{3}$.
故答案为:$-\frac{1}{3}$.

点评 本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网