题目内容

已知抛物线y2=2px的焦点F到其准线的距离是8,抛物线的准线与x轴的交点为K,点A在抛物线上且|AK|=
2
|AF|,则△AFK的面积为
 
考点:抛物线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:由抛物线的性质可求p,进而可求抛物线的方程,设A(x,y),K(-4,0),F(4,0),由|AK|=
2
|AF|,及点A在抛物线上,利用两点间的距离公式可得关于x,y的方程,解方程可求A 的坐标,进而可求△AFK的面积.
解答: 解:由题意可得,p=8,
∴抛物线的方程为y2=16x,
设A(x,y),K(-4,0),F(4,0),
∵|AK|=
2
|AF|,∴
(x+4)2+y2
=
2
(x-4)2+y2

整理可得,x2+y2-24x+16=0,
∵y2=16x,
∴x2-8x+16=0,
∴x=4,|y|=8,
∴S△AFK=
1
2
|FK||y|=
1
2
×8×8
=32.
故答案为:32.
点评:本题主要考查了抛物线的性质的简单应用及基本的运算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网