题目内容

6.已知函数f(x=$\left\{\begin{array}{l}{f(x+2),x<2}\\{(\frac{1}{3})^{x},x≥2}\end{array}\right.$,f(-1+log35)的值为(  )
A.$\frac{1}{15}$B.$\frac{5}{3}$C.15D.$\frac{2}{3}$

分析 利用分段函数的性质求解.

解答 解:f(-1+log35)=f(-1+log35+2)
=f(log315)=($\frac{1}{3}$)${\;}^{lo{g}_{3}15}$=(${3}^{lo{g}_{3}15}$)-1=$\frac{1}{15}$.
故选:A.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意分段函数性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网